
MySQL
基础
数据库三大范式 (中)

第一范式: 要求数据库表的每一列都是不可分割的原子数据项

如详细地址可以分割为 省市区等.

第二范式: 非主键属性必须完全依赖于主键, 不能部分依赖

第二范式要确保数据库表中的每一列都和主键相关，而不能
只与主键的某一部分相关

第三范式: 任何非主键属性不依赖于其它非主键属性

第三范式需要确保数据表中的每一列数据都和主键直接相
关，而不能间接相关, 避免传递依赖

一张表, 有学生id, 学号, 姓名, 年龄, 班主任姓名, 班主任年龄

此时班主任年龄依赖于班主任姓名或者班主任id, 不应该依赖
于学生id, 所以这就是间接相关.

数据库三范式也并不是必须遵守的, 适当添加冗余信息, 可以减少多
表查询, 提高效率.

CHAR和VARCHAR有什么区别？ (中)

CHAR是固定长度的字符串类型，定义时需要指定固定长度，存
储时会在末尾补足空格。CHAR适合存储长度固定的数据，如固
定长度的代码、状态等，存储空间固定，对于短字符串效率较
高。

af://n0
af://n2
af://n3
af://n26

VARCHAR是可变长度的字符串类型，定义时需要指定最大长
度，实际存储时根据实际长度占用存储空间。VARCHAR适合存
储长度可变的数据，如用户输入的文本、备注等，节约存储空
间。

SQL语句的执行顺序 (中)

当一个查询语句同时出现了where,group by,having,order by的时
候, 编写顺序

实际执行顺序:

1. 执行from查看表

2. 执行where xx对全表数据做筛选，返回第1个结果集。

3. 针对第1个结果集使用group by分组，返回第2个结果集。

4. 针对第2个结果集执行having xx进行筛选，返回第3个结果集。

5. 针对第3个结果集执行select xx，返回第4个结果集。

6. 针对第4个结果集order by排序, 返回第5个结果集

7. 针对第5个结果集使用limit进行条数限制, 返回第6个结果集

select 字段

from 表名

where 条件列表

group by 分组条件

having 分组后筛选

order by 排序条件

limit 条数

1

2

3

4

5

6

7

af://n33
af://n54

架构/引擎
SQL语句的执行过程/MySQL架构是什么 (中)

取得链接，使用使用到 MySQL 中的连接器

连接的过程需要先经过 TCP 三次握手，因为 MySQL 是基于
TCP 协议进行传输的

校验客户端的用户名和密码

校验用户权限

查询缓存，key 为 SQL 语句，value 为查询结果，如果查到就直
接返回。不建议使用此缓存， 在 MySQL 8.0 版本已经将查询缓
存删除，也就是说 MySQL 8.0 版本后不存在此功能

更新比较频繁的表，查询缓存的命中率很低的，因为只要一
个表有更新操作，那么这个表的查询缓存就会被清空

分析器，分为词法分析和语法分析。词法分析就是提取sql语句
关键字, 语法分析就是语法校验, 构建 SQL 语法树, 方便后续模块
读取表名、字段、语句类型

执行阶段

预处理:

检查 SQL 查询语句中的表或者字段是否存在；

将 select * 中的 * 符号，扩展为表上的所有列；

优化阶段(优化器):

在表里有多个索引的时候，决定使用哪个索引；

或者一个语句中存在多表关联的时 候（join），决定各个
表的连接顺序

执行阶段(执行器): 据表的引擎定义(Innodb或者MyISAM)，
去使用这个引擎提供的接口

af://n54
af://n55

数据库存储引擎有哪些 (高)

innodb

事务, 外键, 行级锁

适合事务要求高, 数据完整性高的场景

MyISAM

全表锁, 不支持事务, 不支持外键, 并发性低

适合对事务要求不高, 数据完整性要求不高, 并发性要求不高的场
景

memory

全表锁

数据存储在内存中, 默认使用hash索引, 检索速度非常高.

适合做缓存 (被redis代替)

innodb和MyISAM的区别 (高)

Innodb有事务 外键 行级锁

InnoDB 支持数据库异常崩溃后的安全恢复, 依赖于redo log ,

而MyISAM不支持

innodb支持MVCC, MyISAM不支持

af://n93
af://n115
af://n124

索引 (常考)
MySQL中的索引类型 (高)

逻辑维度

主键索引: 针对表主键的索引, 默认创建, 只能有一个

唯一索引: 避免一个表中的索引重复, 可以多个

常规索引: 快速定位数据, 可以多个

前缀索引: 在文本类型如CHAR,VARCHAR,TEXT类列上创建索引
时，可以指定索引列的长度. 但是数值类型不 能指定长度

联合索引: 多个列组合的索引 (最左前缀匹配原则, 索引下推, 避免
回表, select *)

全文索引: 查找文本中的关键词. 像es一样. 可以多个

innodb中根据索引的物理存储形式, 又可以分为两种

聚集索引: 一般主键索引就是聚集索引, 且只有一个. 索引的叶子
节点是id, id下挂了行数据.

二级索引: 索引的叶子节点是该列的值, 下面挂了id

如果走二级索引, 那么就先从二级索引中拿到id, 再根据id从聚
集索引中查行数据. 这个过程叫回表, 一般要避免回表(不要使
用select *).

为什么InnoDB存储引擎选择使用B+树索引结构？
(高)

相对于二叉树，层级更少，搜索效率高；

B树无论是叶子节点还是非叶子节点，都会保存数据，这样导致
一页中存储的键值减少，指针跟着减少，要同样保存大量数据，
只能增加树的高度，导致性能降低；

af://n124
af://n125
af://n150

相对Hash索引，B+树支持范围匹配及排序操作；

什么是覆盖索引/什么是回表 (高)

如果一个索引包含（或者说覆盖）所有需要查询的字段的值，我们
就称之为 覆盖索引（Covering Index）

在 InnoDB 存储引擎中，非主键索引的叶子节点包含的是主键的
值

这意味着，当使用非主键索引进行查询时，数据库会先找到对应
的主键值，然后再通过主键索引来定位和检索完整的行数据。这
个过程被称为“回表”

覆盖索引即需要查询的字段正好是索引的字段，那么直接根据该索
引，就可以查到数据了，而无需回表查询。

为了尽可能避免回表, 所以往往会使用联合索引.

索引的使用原则/索引失效场景 (高)

(有非常多的场景和原则, 这里给出最常见的)

最左前缀匹配原则

如果索引了多列（联合索引）,要遵守最左前缀法则。最左前
缀法则指的是查询从索引的最左列开始，并且不跳过索引中
的列。如果跳跃某一列，索引将部分失效（后面的字段索引
失效）

af://n159
af://n169

索引列运算/函数会使索引失效;

where substring(phone, 10, 2) = '12'

模糊查询

where name like '王%' 尾部模糊, 索引生效

where name like '王%王' 尾部模糊, 索引生效

where name like '%三' 头部模糊, 索引失效

覆盖索引

尽量使用覆盖索引（查询使用了索引，并且需要返回的列，
在该索引中已经全部能够找到）,避免回表.

在WHERE子句中，如果在OR前的条件列是索引列，而在OR后的
条件列不是索引列，那么索引会失效。

创建联合索引时需要注意什么？ (高)

最左前缀匹配法则

把区分度大的字段排在前面性能会更高, 把性别这种区分度小的
字段应该放在后面.

联合索引(a, b, c)

where a=1 and b=2 # 走联合索引

where b=2 and a=1 # 走联合索引, 不会因为where后

的字段顺序就失效

where b=2 and c=1 # 不会走联合索引, 因为a字段在

索引最左侧, where中没有a

where c=1 and a=2 # 会走联合索引关于a的部分

1

2

3

4

5

6

af://n201

什么情况不走联合索引? (高)

设置联合索引(a,b,c), 查询条件如下

where a=1 and b=2

会走联合索引, 符合最左前缀匹配法则

where b=2 and a=1

会走联合索引, 符合最左前缀匹配法则. 注意, 最左前缀匹配法
则与sql书写顺序无关

where b=2 and c=1

不会走联合索引, 不符合最左前缀匹配法则, 最左边的a不在

where a=1 and c=2

会走联合索引, 符合最左前缀匹配法则. 但是只会走a这部分的
索引, 无法走c部分的索引, 因为没有b.

索引的优缺点？ (高)

索引最大的好处是提高查询速度，但是索引也是有缺点的

需要占用物理空间，数量越大，占用空间越大；

创建索引和维护索引要耗费时间，这种时间随着数据量的增加而
增大；

会降低表的增删改的效率，因为每次增删改索引，B+树为了维护
索引有序性，都需要进行动态维护。

索引不是万能的，它也是根据场景来使用的

af://n208
af://n232

索引设计原则 (高)

数据量大的, 查询频繁的列建立索引

对于经常where, order by, group by的列建立索引

选择区分度高的列做索引. 身份证号适合索引, 性别和状态不适合
索引

字符串类型且比较长的, 可以使用前缀索引

尽量使用联合索引, 而不是单列索引, 联合索引很多时候可以覆盖
索引, 避免回表

控制索引数量, 索引不是多多益善, 太多了占空间, 维护索引需要
的代价也越多, 增删改反而会比较慢.

常见sql优化手段 (高)

查询语句中不要使用select *, 避免回表查询

数据库主键要保证自增(UUID不适合做主键), 且插入的数据主键
也要交保证自增插入, 否则会引起页分裂

尽量避免在 where 子句中使用!=或<>操作符，否则将引擎放弃
使用索引而进行全表扫描

尽量避免在 where 子句中对字段进行 null 值判断，否则将导致
引擎放弃使用索引而进行全表 扫描

使用update时, where条件尽量用带索引的字段, 上行锁. InnoDB
的行锁是针对索引加的锁, 不是针对记录加的锁.

count(*)效率最高, 因为innodb做了优化.

表关联查询的效率高于子查询, 所以尽量少用子查询, 用关联查询
替代.

关联查询时, on的条件列最好加上索引, 否则非常慢

af://n243
af://n258

SQL优化详解 (中)

插入优化

主键优化

主键乱序会导致页分裂问题, 性能较差

af://n277

order by优化

group by 优化

limit优化

有张blog表, 字段 id, content, create_time, ... , 需要分页按

创建时间倒序显示blog

常规分页查询sql: select * from blog order by create_time

desc limit 2000000, 10

这里mysql需要排序前面的2000010条记录, 然后丢弃其他记录, 只返
回2000000~2000010条记录. 所以存在严重的性能问题.

优化: 建立排序列索引 + id子查询避免回表

建立create_time的索引

使用子查询分页 select * from blog inner join (select

id from blog order by create_time desc limit

2000000, 10)

几种count对比

update优化

InnoDB的行锁是针对索引加的锁, 不是针对记录加的锁. 如果where
条件是不带索引的字段, 那么就会是表锁. 如果where条件是带索引
的字段, 那么是行锁. 并且该索引不能失效, 否则会从行锁升级为表
锁. 表锁的并发性能低

在有事务的情况下, update进行更新的时候,

1. 如果where条件是id等带索引的字段, 则update会对该上行锁. 那
么其他事务不能对该行进行操作, 但是可以对该表的其他行进行
操作.

2. 如果where条件是不带索引的字段, 则update会上表锁, 其他事务
对整张表都不能进行操作 (会阻塞).

因此, 使用update时, where条件尽量用带索引的字段, 上行锁.

where优化

应尽量避免在 where 子句中使用!=或<>操作符，否则将引擎放弃使
用索引而进行全表扫描。

应尽量避免在 where 子句中对字段进行 null 值判断，否则将导致引
擎放弃使用索引而进行全表扫 描，如： select id from t where
num is null 可以在num上设置默认值0，确保表中num列没有null
值，然后这样查询： select id from t where num=0

什么时候不要使用索引 (高)

1. 经常增删改的列不要建立索引

2. 有大量重复的列不建立索引

af://n326

3. 表记录太少不要建立索引

索引下推 (中)

可以在索引遍历过程中，对索引中包含的字段先做判断，直接过滤
掉不满足条件的记录，然后再去做回表, 从而减少了回表次数, 提升
了性能.

组合索引满足最左匹配，但是遇到非等值判断时匹配停止。
name like '陈%' 不是等值匹配，所以 age = 20 这里就用不上
(name,age) 组合索引了。如果没有索引下推，组合索引只能用到
name，age 的判定就需要回表才能做了。5.6之后有了索引下推，
age = 20 可以直接在组合索引里判定

举例说明

假设存在表 user，其索引为 (name, age)，查询语句如下：

联合索引先按name排序，name一样再按age排序，如果是
name="张三" and age > 18，这个就能使用联合索引的所有列. 不需
要索引下推.

无索引下推：

这里走联合索引先筛选出姓名以王开头的用户

由于这里是模糊匹配, 不是等值匹配, 故获取所有以王开头的
用户后, 他们的age不一定有序的.

SELECT *

FROM user

WHERE name LIKE '王%'

 AND age = 30;

1

2

3

4

af://n335

如 [张一, 20], [张二, 18], [张三, 30]
所以无法继续使用联合索引的特性来筛选age, 只能拿到以王
开头的用户的id, 去回表, 然后再筛选出age=30的人.

有索引下推：

走联合索引先筛选出姓名以王开头且同时age=30的用户

结果为[张三, 30]

回表只需要根据张三的id查即可

可以看到使用了索引下推后, 大大减少了回表操作.

新手可能不是很理解, 建议配合视频或者网上博客理解.

怎么找到慢sql? 可以从哪些角度优化? (高)

寻找慢sql:

打开慢查询日志

使用explain执行计划来对慢 SQL 进行分析, 查询是否使用了索引
(sql语句前加上 explain即可)

sql优化:

避免使用select *, 避免查询不需要的列

尝试给where, order by, limit后面的列添加索引

如果有索引, 避免给重复值很多的列添加索引

添加索引尽量使用联合索引, 尽量覆盖索引, 避免回表

对于update和delete慢, 应该where后面跟索引列, 使用行锁, 避
免使用表锁

对于insert慢, 应该使用递增的主键, 避免页分裂

如果有limit, 应该先查id, 再根据id查询 (覆盖索引+子查询优化)

尽量使用count(*)

af://n370

避免索引失效

数据量大使用分库分表

可以加缓存, 加es

什么是慢查询日志(slow query log) (高)

慢查询日志记录了执行时间超过 long_query_time（默认是 10s，
通常设置为 1s）的所有查询语句，在解决 SQL 慢查询（SQL 执行时
间过长）问题的时候经常会用到

找到慢 SQL 是优化 SQL 语句性能的第一步，然后再用EXPLAIN 命
令可以对慢 SQL 进行分析，获取执行计划的相关信息

explain执行计划 (高)

#先执行一条sql

select * from user;

#在该sql前加上explain关键字

explain select * from user;

1

2

3

4

5

af://n402
af://n406

重要点关注: type, prossible_key, key, key_len, extra.

发现查询速度很慢，怎么解决 (高)

分析查询语句：使用EXPLAIN命令分析SQL执行计划，找出慢查
询的原因，比如是否使用了全表扫描，是否存在索引未被利用的
情况等，并根据相应情况对索引进行适当修改。

创建或优化索引：根据查询条件创建合适的索引，特别是经常用
于WHERE子句的字段、Orderby排序的字段、Join连表查询的字
典、groupby的字段，并且如果查询中经常涉及多个字段，考虑
创建联合索引

避免索引失效：比如不要用左模糊匹配、函数计算、表达式计算
等等。

查询优化：避免使用 SELECT * ,只查询真正需要的列；使用覆盖

索引，即索引包含所有查询的字段；联
表查询最好要以小表驱动大表，并且被驱动表的字段要有索引，
当然最好通过穴余字段的设计，避免联
表查询。

分页优化：针对深分页的查询优化

af://n412

优化数据库表：如果单表的数据超过了千万级别，考虑是否需要
将大表拆分为小表，减轻单个表的查询压力。也可以将字段多的
表分解成多个表，有些字段使用频率高，有些低，数据量大时，
会由于使用频率低的存在而变慢，可以考虑分开

使用缓存技术：引入缓存, 存储热点数据和频繁查询的结果

Explain发现执行的索引不正确的话，怎么办？ (高)

可以使用force index, 强制走索引

事务 (常考)
什么是数据库事务/事务四大特性 (高)

事务: 一系列sql语句, 要么全成功, 要么全失败.

原子性 (Atomicity): 事务是不可分割的最小单元, n个连续操作失败
了一个, 前面的操作回滚 (要么都成功, 要么都失败)

原子性通过undolog回滚来实现

一致性(Consistency): 执行事务前后，数据总量保持一致. 例如转账
业务中，无论事务是否成功，转账者和收款人的总额应该是不变
的；

保证了其他三个特性, 一致性就自然实现了.

持久性 (Durability): 持久性是指一个事务一旦被提交，它对数据库
中数据的改变就是永久性的, 无法撤销

redolog来实现

af://n429
af://n432
af://n433

隔离性 (Isolation): 多个用户并发访问数据库时，数据库为每一个
用户开启的事务，不能被其他事务的操作数据所干扰，多个并发事
务之间要相互隔离, 保证每个事务不受并发影响, 独立执行.

mvcc+锁 配合undolog来实现

隔离性产生的问题 (高)

脏读: 一个事务读取到另一个事务未提交的数据

1. 在事务A执行过程中，事务A对数据资源进行了修改，事务B读取
了事务A修改后的数据。

2. 由于某些原因，事务A并没有完成提交，发生了RollBack操作，
则事务B读取的数据就是脏数据。

这种读取到另一个事务未提交的数据的现象就是脏读(Dirty Read)。

不可重复读:

事务B读取了两次数据资源，在这两次读取的过程中事务A修改了
数据，导致事务B在这两次读取出来的数据不一致。

这种在同一个事务中，前后两次读取的数据不一致的现象就是不
可重复读(Nonrepeatable Read)。

幻读:

事务A按照条件查询数据时，没有对应的数据行，但是在插入数
据时，又发现这行数据已经存在，好像出现了幻觉。(由于解决了
不可重复读, 所以该事务读取不到别的事务已提交的数据)

幻读和不可重复读有些类似，但是幻读强调的是集合的增减，而
不是单条数据的更新。(比如第一次读是有0条数据, 但是第二次
读却有了1条数据).

af://n452

不可重复读和幻读区别: 不可重复读的重点是修改比如多次读取一条
记录发现其中某些列的值被修改，幻读的重点在于新增或者删除比
如多次读取一条记录发现记录增多或减少了

事务的隔离级别 (高)

为了解决以上的问题，主流的关系型数据库都会提供四种事务的隔
离级别。事务隔离级别从低到高分别是：读未提交、读已提交、可
重复读、串行化。

事务隔离级别等级越高，越能保证数据的一致性和完整性，但是执
行效率也越低。

所以在设置数据库的事务隔离级别时需要做一下权衡，MySQL默认
是可重复读的级别。

读未提交

读未提交(Read Uncommitted)，是最低的隔离级别，所有的事
务都可以看到其他未提交的事务的执行结果。不能解决脏读，可
重复读，幻读，所以很少应用于实际项目。

读已提交

读已提交(Read Committed)， 在该隔离级别下，一个事务的更
新操作结果只有在该事务提交之后，另一个事务才可能读取到同
一笔数据更新后的结果。

可以防止脏读，但是不能解决可重复读和幻读的问题。

可重复读 (mysql默认隔离级别)

可重复读(Repeatable Read)，MySQL默认的隔离级别。

af://n475

可重复读是快照读, 在该隔离级别下，一个事务多次读同一个数
据, 实际上读的是数据快照, 其他事务修改数据在当前事务是不可
见的, 这样就可以保证在同一个事务内两次读到的数据是一样
的。

可以防止脏读、不可重复读、第一类更新丢失、第二类更新丢失
的问题，不过还是会出现幻读。

串行化

串行化(Serializable)，这是最高的隔离级别。

它要求事务序列化执行，事务只能一个接着一个地执行，不能并
发执行(会阻塞)。

在这个级别，可以解决上面提到的所有并发问题，但可能导致大
量的超时现象和锁竞争，通常不会用这个隔离级别

注意: 事务的隔离级别越高, 数据安全性就越高, 但是执行效率越低.
事务的隔离级别越低, 执行效率就越高, 但是数据安全性就越低.

MySQL 的隔离级别怎么实现的 (中)

MySQL 的隔离级别基于锁和 MVCC 机制共同实现的。

SERIALIZABLE 隔离级别，是通过锁来实现的

除了 SERIALIZABLE 隔离级别，其他的隔离级别都是基于 MVCC
实现

不过， SERIALIZABLE 之外的其他隔离级别可能也需要用到锁机
制，就比如 REPEATABLE-READ 在当前读情况下需要使用加锁读
来保证不会出现幻读

af://n507

单条update语句是原子性的吗？ (中)

是原子性的

主要通过锁+undolog日志保证原子性的

执行update的时候，会加行级别锁，保证了一个事务更新一
条记录的时候，不会被其他事务干扰。

事务执行过程中，会生成undolog,如果事务执行失败，就可
以通过undolog日志进行回滚。

MVCC
什么是 MVCC (中)

MVCC, 多版本并发控制

指维护一个数据的多个版本，使得读写操作没有冲突, 具体实现就是
快照读, 快照读为MySQL实现MVCC提供了一个非阻塞读功能

MVCC的具体实现，还需要依赖于数据库记录中的隐式字段、undo
log日志、readView。

MVCC 可以为数据库解决什么问题 (中)

在并发读写数据库时, 可以做到在 读 (select) 操作时不用阻塞写操
作，写操作也不用阻塞读操作，提高了数据库并发读写的性能.

同时还可以解决脏读、幻读、不可重复读等事务隔离问题

af://n517
af://n529
af://n530
af://n535

MVCC 的实现原理 (中)

MVCC的具体实现，依赖于数据库记录中的隐式字段(最近更新的事
务id和回滚指针)、undo log日志、readView。

在内部实现中，InnoDB 通过数据行的 DB_TRX_ID(最近更新的事务
id) 和 Read View 来判断数据的可见性，如不可见，则通过数据行的
DB_ROLL_PTR(回滚指针) 找到 undo log 版本链中的历史版本。这
就是快照读

每个事务读到的数据版本可能是不一样的，在同一个事务中，用户
只能看到该事务创建 Read View 之前已经提交的修改和该事务本身
做的修改

ReadView是什么 (中)

Read View是MVCC中用来判断数据的可见性的, 里面记录了活跃事
务 id 列表, 全局事务中最大的事务 id 值, 创建该 Read View 的事务
的事务 id等.

通过比较当前事务id和ReadView中记录的事务id, 就能知道该版本的
记录对当前事务是否可见. 如不可见，则通过数据行的
DB_ROLL_PTR(回滚指针) 找到 undo log 版本链中的历史版本。这
就是快照读

如果想详细了解readView中具体有什么, 怎么对比的, 建议网上查对
应视频. 文字很难讲解清楚, 一般面试也不会问这么详细.

当前读与快照读 (中)

当前读: 读取的是记录的最新版本，读取时还要保证其他并发事务不
能修改当前记录，会对读取的记录进行加锁

af://n539
af://n544
af://n549

对于我们日常的操作，如：select...lock in share mode(共享
锁）,select...for update、update、insert、delete(排他锁）都
是一种当前读

当前读： 使用临键锁进行加锁来保证不出现幻读

快照读: 不加锁的select就是快照读，快照读读取的是记录数据的可
见版本有可能是历史数据，不加锁

读已提交: 每次select都会生成一个快照读

可重复读: 事务开始后的第一个select才是快照读的地方

串行化: 快照度会退化为当前读

快照读 ：由 MVCC 机制来保证不出现幻读

MVCC是怎么实现不可重复读的 (中)

在读已提交下, 在事务中每一次执行快照读时生成ReadView, 这也就
造成了每次读取就有不同ReadView, 那么就会读到已提交的事务修
改的内容, 造成不可重复读的问题.

解决不可重复读主要靠readview, 在隔离级别为可重复读时, 仅在事
务中第一次执行快照读时生成ReadView, 后续复用该ReadView.

由于后续复用了ReadView, 所以数据对当前事务的可见性和第一次
是一样的, 所以从undolog中读到的数据快照和第一次是一样的, 即
便过程中有其他事务修改也读不到.

MVCC是怎么防止幻读的 (中)

InnoDB存储引擎在 RR 级别下通过 MVCC和 Next-key Lock (临键

锁) 来解决幻读问题

1、执行普通 select，此时会以 MVCC 快照读的方式读取数据

af://n567
af://n572

快照读: 避免加锁, 通过MVCC来进行控制, 使其他事务所做的更新对
当前事务不可见, 从而防止幻读.

在快照读的情况下，RR 隔离级别只会在事务开启后的第一次查询生
成 Read View 。所以在生成 Read View 之后其它事务所做的更

新、插入记录版本对当前事务并不可见，实现了可重复读和防止快
照读下的 “幻读”

2、执行 select...for update/lock in share mode、insert、
update、delete 等为当前读

这些语句执行前都会查询最新版本的数据, 所以是当前读

当前读: 通过临键锁next-key-lock锁住空隙, 防止其他事务在查询
的范围内插入数据, 从而防止幻读.

在当前读下，读取的都是最新的数据，如果其它事务有插入新的记
录，并且刚好在当前事务查询范围内，就会产生幻读！InnoDB 使

用 Next-key Lock 临键锁来防止这种情况。当执行当前读时，会
锁定读取到的记录的同时，锁定它们的间隙，防止其它事务在查询
范围内插入数据。只要我不让你插入，就不会发生幻读

但是MVCC并没有彻底防止幻读问题, 只是解决了大多数幻读问题, 在
一些极端场景还是会有幻读问题.

锁
(锁这一节非常复杂, 锁非常多, 各种情况也非常多, 往往不是面试重
点, 所以了解即可, 这里只给出常见考点)

af://n584

锁的分类 (中)

全局锁：锁定数据库中的所有表。

全局锁就是对整个数据库实例加锁，加锁后整个实例就处于只读
状态，后续的DML的写语句，DDL语句，已经更新操作的事务提
交语句都将被阻塞

表级锁

表锁

每次操作锁住整张表

开销小，加锁快

并发度最低

元数据锁（meta data lock,MDL)

MDL不需要显式使用，在访问一个表的时候会被自动加
上。

MDL的作用：保证读写的正确性。

如果一个查询正在遍历一个表中的数据，而执行期间另一
个线程对这个表结构做变更，删了一列，那么查询线程拿
到的结果跟表结构对不上，肯定是不行的。

当对一个表做增删改查操作的时候，加MDL读锁；

当要对表做结构变更操作的时候，加MDL写锁。

读锁之间不互斥，因此你可以有多个线程同时对一张表增
删改查。读写锁之间、写锁之间是互斥的，用来保证变更
表结构操作的安全性。

如果有两个线程要同时给一个表加字段，其中一个要等另
一个执行完才能开始执行。

行级锁

af://n586

顾名思义，行锁就是针对数据表中行记录的锁（也有人称为
记录锁）。

事务A更新了一行，而这时候事务B也要更新同一行，则必须
等事务A的操作完成后才能进行更新。

特点：

每次操作锁住一行数据

开销大，加锁慢

发生锁冲突的概率是最低的，并发度是最高的

共享锁和排他锁 (中)

共享锁（共享锁也叫读锁或S锁）

共享锁锁定的资源可以被其他用户读取，但不能修改。

在进行SELECT的时候，会将对象进行共享锁锁定，当数据读
取完毕之后，就会释放共享锁，这样就可以保证数据在读取
时不被修改。

加锁语句：SELECT xxx from xxx LOCK IN SHARE MODE;

排他锁（排它锁也叫独占锁、写锁或X锁）

排它锁锁定的数据只允许进行锁定操作的事务使用，其他事
务无法对已锁定的数据进行查询或修改

加锁语句: SELECT xxx from xxx FOR UPDATE;

对数据进行更新的时候，也就是INSERT、DELETE或者
UPDATE的时候，数据库也会自动使用排它锁，防止其他事
务对该数据行进行操作。

当然, 共享锁和排他锁不仅可以锁住一行，也可以锁住一张表.

af://n637

表级锁和行级锁的区别 (中)

表级锁（table-level locking)一锁就锁整张表, 是针对非索引字段加
的锁

行级锁的粒度更小，只针对当前操作的行记录进行加锁

InnoDB的行锁是针对索引字段加的锁，表级锁是针对非索引字
段加的锁

当我们执行UPDATE、DELETE语句时，如果操作不走索引，就会
升级为表锁

InnoDB 有哪几类行锁？ (中)

MySQL InnoDB 支持三种行锁定方式：

记录锁（Record Lock） ：也被称为记录锁，属于单个行记录
上的锁。

间隙锁（Gap Lock） ：锁定一个范围，不包括记录本身。

SELECT * FROM table WHERE id BETWEN 1 AND 10 FOR

UPDATE ;

即所有在（1，10）区间内的记录行都会被锁住，所有id 为
2、3、4、5、6、7、8、9 的数据行的插入会被阻塞，但是 1
和 10 两条记录行并不会被锁住

临键锁(Next-key Lock): 行锁和间隙锁组合，同时锁住数据，并
锁住数据前面的间隙Gap. 相当于锁定一个范围，包含记录本身,
左闭右开

有一个列age, 已有的记录中age分别为2, 8. 则潜在的临键锁
为 (-∞, 2] (2,8] (8,+∞]

af://n659
af://n668

数据库的表锁和行锁有什么作用？ (中)

表锁

整体控制：表锁可以用来控制整个表的并发访问，当一个事务获
取了表锁时，其他事务无法对该表进行任何读写操作，从而确保
数据的完整性和一致性。

粒度大：表锁的粒度比较大，在锁定表的情况下，可能会影响到
整个表的其他操作，可能会引起锁竞争和性能问题。

适用于大批量操作：表锁适合于需要大批量操作表中数据的场
景，例如表的重建、大量数据的加载等。

行锁

细粒度控制：行锁可以精确控制对表中某行数据的访问，使得其
他事务可以同时访问表中的其他行数据，在并发量大的系统中能
够提高并发性能

减少锁冲突：行锁不会像表锁那样造成整个表的锁冲突，减少了
锁竞争的可能性，提高了并发访问的效率

适用于频繁单行操作：行锁适合于需要频繁对表中单独行进行操
作的场景

MySQL两个事务的update语句同时更新同一条数
据，会发生什么情况？ (中)

两个事务同时使用update, 首先要明确是当前读

当事务A对id=1这行记录进行更新时，会对主键id为1的记录加行
锁

事务B对id=1进行更新时，发现已经有行锁了，就会陷入阻塞状
态

af://n686
af://n704

两条update语句修改处理同一张表的不同范围的数
据, 一个<5,一个>10, 会阻塞吗? (中)

得分情况.

如果update的where条件是索引列, 那么会加行锁.

第一条 update xxx where 索引列 < 5, 锁住的范围是（-无穷,5)

第二条 update xxx where 索引列 > 10, 锁住的范围是（10, +无
穷)

如果两个update的where条件不是索引列, 那么由于没有用到索引,
所以会触发全表扫描, 会加表锁. 此时第二条update执行的时候，就
会被阻塞.

日志
三大日志 (高)

undo log（回滚日志）：主要用于事务回滚和 MVCC, 实现了事
务中的原子性

redo log（重做日志）：主要用于掉电重启等故障恢复, 实现了
事务中的持久性

binlog （归档日志/二进制日志）：主要用于数据备份和主从复
制；

binlog主要记录了什么？有什么用？ (高)

binlog, 即二进制日志, 主要记录了对 MySQL 数据库执行了更改的所
有操作(数据库执行的所有 DDL 和 DML 语句)

包括表结构变更（CREATE、ALTER、DROP TABLE…）

af://n713
af://n723
af://n724
af://n733

表数据修改（INSERT、UPDATE、DELETE...）

但不包括 SELECT、SHOW 这类不会对数据库造成更改的操作。

数据库的数据备份、主备、主从需要依靠binlog来同步数据，保证

数据一致性。

redo log主要记录了什么？有什么用？ (高)

redo log重做日志，记录的是事务提交时数据页的物理修改，是用
来实现事务的持久性. 它让MySQL拥有了崩溃恢复能力.

redo log基本过程 (高)

MySQL 中数据是以页为单位，你查询一条记录，会从硬盘把一页的
数据加载出来，加载出来的数据叫数据页，会放入到 Buffer Pool

中。

后续的查询都是先从 Buffer Pool 中找，没有命中再去硬盘加载，

减少硬盘 IO 开销，提升性能。

更新表数据的时候，也是如此，发现 Buffer Pool 里存在要更新的

数据，就直接在 Buffer Pool 里更新.

一个事务提交之后，我们对 Buffer Pool 中对应的页的修改可能还未
持久化到磁盘。这个时候，如果 MySQL 突然宕机的话，这个事务的
更改是不是直接就消失了呢？

MySQL InnoDB 引擎使用 redo log 来保证事务的持久性, redo log
主要做的事情就是记录页的修改，比如某个页面某个偏移量处修改
了几个字节的值以及具体被修改的内容是什么.

af://n744
af://n747

在事务提交时，我们会将 redo log 按照刷盘策略刷到磁盘上去. 即
使 MySQL 宕机了，重启之后也能恢复未能写入磁盘的数据，从而保
证事务的持久性。也就是说，redo log 让 MySQL 具备了崩溃回复
能力.

为什么事务提交后不直接将Buffer Pool的数据同步到
磁盘 (中)

实际上，数据页大小是16KB，刷盘比较耗时，可能就修改了数据页

里的几 Byte 数据，有必要把完整的数据页刷盘吗？

而且数据页刷盘是随机写，因为一个数据页对应的位置可能在硬盘
文件的随机位置，所以性能是很差。

如果是写 redo log，一行记录可能就占几十 Byte，只包含表空间
号、数据页号、磁盘文件偏移 量、更新值，内容少, 再加上是顺序
写，所以刷盘速度很快。

所以用 redo log 形式记录修改内容，性能会远远超过刷数据页的

方式，这也让数据库的并发能力更强。

binlog 和 redolog 有什么区别？ (中)

1. binlog 主要用于数据库还原，属于数据级别的数据恢复，主从复
制是 binlog 最常见的一个应用场景。redolog 主要用于保证事务
的持久性，属于事务级别的数据恢复。

2. redolog 属于 InnoDB 引擎特有的，binlog 属于所有存储引擎共
有的，因为 binlog 是 MySQL 的 Server 层实现的。

3. redolog 属于物理日志，主要记录的是某个页的修改。binlog 属
于逻辑日志，主要记录的是数据库执行的所有 DDL 和 DML 语
句。

af://n755
af://n761

4. binlog 通过追加的方式进行写入，大小没有限制。redo log 采用
循环写的方式进行写入，大小固定，当写到结尾时，会回到开头
循环写日志。

循环写日志是否会覆盖: CheckPoint 机制可以帮助解决这个
问题。一旦不够用需要覆盖之前的日志内容时，为保证被覆
盖的日志内容是不再需要的、无用的，则需要将 Buffer Pool
中的脏页同步到硬盘中，并进行 Checkpoint 操作.

为什么需要 redo log (高)

实现事务的持久性，让 MySQL 有 崩溃恢复 的能力，能够保证
MySQL 在任何时间段突然崩溃，重启后之前已提交的记录都不
会丢失；

将写操作从「随机写」变成了「顺序写」，提升 MySQL 写入磁
盘的性能。

两阶段提交是什么? (中)

在执行更新语句过程，会记录redo log与bin log两块日志，以基本
的事务为单位，redo log在事务执行过程中可以不断写入，而bin
log只有在提交事务时才写入，所以redo log与bin log的写入时机不
一样。

假设id=2的记录，字段c值是0，把字段c值更新成1, sql为 update

T set c=1 where id=2

假设执行过程中写完redo log日志后，binlog日志写期间发生了
异常，会出现什么情况呢?

由于binlog没写完就异常，这时候binlog里面没有对应的修改记录。
但是redo log中有数据. 两份日志数据不一致.

af://n775
af://n782

在主从架构中, 主库通过redo log恢复数据后, 主库的c为0

从库同步主库的binlog, 从库的c为1

此时就会出现主从数据不一致的场景

为了解决两份日志之间的逻辑一致问题，InnoDB存储引擎使用两阶

段提交方案。将redo log的写入拆成了两个步骤prepare和

commit，这就是两阶段提交。

开始事务 -> 更新数据 -> 写入redo log(redo log prepare阶段) ->
提交事务(写入binlog, redolog 设置为commit)

此时, 如过发生写入binlog异常. 那么mysql根据redo log进行日志数
据恢复时, 会发现redo log处于prepare阶段, 并且没有对应binlog

日志, 那么就会回滚事务.

redo log设置commit阶段发生异常，那会不会回滚事务呢？ 并不

会回滚事务 , 虽然redo log是处于prepare阶段，但是能通过事务

id找到对应的binlog日志，所以MySQL认为是完整的，就会提交

事务恢复数据

undo log (高)

Undo Log（回滚日志）记录了事务操作前的数据状态，确保事务回
滚时能恢复原始数据，并为并发事务提供数据的历史版本。

核心作用

事务回滚（Rollback）：当事务执行失败或显式调用 ROLLBACK
时，通过 Undo Log 将数据恢复到修改前的状态。

MVCC（多版本并发控制）：提供数据的历史版本，使其他事务
能读取到一致的快照（Read View），避免读写冲突。

af://n801

	MySQL
	基础
	数据库三大范式 (中)
	CHAR和VARCHAR有什么区别？ (中)
	SQL语句的执行顺序 (中)

	架构/引擎
	SQL语句的执行过程/MySQL架构是什么 (中)
	数据库存储引擎有哪些 (高)
	innodb和MyISAM的区别 (高)

	索引 (常考)
	MySQL中的索引类型 (高)
	为什么InnoDB存储引擎选择使用B+树索引结构？ (高)
	什么是覆盖索引/什么是回表 (高)
	索引的使用原则/索引失效场景 (高)
	创建联合索引时需要注意什么？ (高)
	什么情况不走联合索引? (高)
	索引的优缺点？ (高)
	索引设计原则 (高)
	常见sql优化手段 (高)
	SQL优化详解 (中)
	什么时候不要使用索引 (高)
	索引下推 (中)
	怎么找到慢sql? 可以从哪些角度优化? (高)
	什么是慢查询日志(slow query log) (高)
	explain执行计划 (高)
	发现查询速度很慢，怎么解决 (高)
	Explain发现执行的索引不正确的话，怎么办？ (高)

	事务 (常考)
	什么是数据库事务/事务四大特性 (高)
	隔离性产生的问题 (高)
	事务的隔离级别 (高)
	MySQL 的隔离级别怎么实现的 (中)
	单条update语句是原子性的吗？ (中)

	MVCC
	什么是 MVCC (中)
	MVCC 可以为数据库解决什么问题 (中)
	MVCC 的实现原理 (中)
	ReadView是什么 (中)
	当前读与快照读 (中)
	MVCC是怎么实现不可重复读的 (中)
	MVCC是怎么防止幻读的 (中)

	锁
	锁的分类 (中)
	共享锁和排他锁 (中)
	表级锁和行级锁的区别 (中)
	InnoDB 有哪几类行锁？ (中)
	数据库的表锁和行锁有什么作用？ (中)
	MySQL两个事务的update语句同时更新同一条数据，会发生什么情况？ (中)
	两条update语句修改处理同一张表的不同范围的数据, 一个<5,一个>10, 会阻塞吗? (中)

	日志
	三大日志 (高)
	binlog主要记录了什么？有什么用？ (高)
	redo log主要记录了什么？有什么用？ (高)
	redo log基本过程 (高)
	为什么事务提交后不直接将Buffer Pool的数据同步到磁盘 (中)
	binlog 和 redolog 有什么区别？ (中)
	为什么需要 redo log (高)
	两阶段提交是什么? (中)
	undo log (高)

