
MQ
(此处的大多是以rabbitmq为例, 其他mq也是类似的, 只是细节不同)

MQ有什么作用/为什么使用MQ (高)

消息队列的本质其实就是一个阻塞队列, 只是在阻塞队列的基础上增
加了重试, 消息持久化等等功能.

异步:

A 系统接收一个请求，需要在自己本地写库，还需要在 BCD 三
个系统写库

自己本地写库要 3ms，BCD 三个系统分别写库要 300ms、
450ms、200ms。最终请求总延时是 3 + 300 + 450 + 200 =
953ms，接近 1s

如果使用 MQ，那么 A 系统自己本地写库要 3ms, 连续发送 3 条
消息到 MQ 队列中，假如耗时 5ms，A 系统从接受一 个请求到
返回响应给用户，总时长是 3 + 5 = 8ms; 就非常快

削峰:

订单系统中, 在业务高峰期, 下单的太多. 那么直接将生成得订单
id放到MQ中, 消息都堆在MQ中. 这就是削峰

让新线程/其他服务监听MQ, 然后慢慢地去异步地进行订单创建,
库存扣减等工作. 这些工作会持续到业务的低谷期. 所以叫平谷

解耦:

A通过接口调用的形式发送数据给BCD, 此时如果E也需要这个数
据呢? 如果C不要这个数据呢? 这时候A和其他系统严重耦合.

如果A直接发送数据给MQ, 新系统需要数据, 直接监听MQ即可,
旧系统不需要数据了, 就不需要监听MQ了.

af://n0
af://n3

这样就是谁需要谁去拿, A只用和MQ交互. A不需要考虑给谁发送
数据, 也不需要考虑别人调用失败, 或者超时了怎么办.

MQ优缺点 (高)

优点就是: 异步 削峰 解耦

缺点就是:

系统的可用性降低了: 新引入了MQ, 那么如果MQ挂了, 和MQ相
关的服务就崩溃了

系统复杂度提高了: 硬生生加个 MQ 进来，你怎么保证消息没有
重复消费？怎么处理消息丢失的情况？ 怎么保证消息传递的顺序
性？问题一大堆

数据一致性问题: A 系统处理完了直接返回成功了，人都以为你
这个请求就成功了；但是问题是，要是 BCD 三个系统那里，BD
两个系统写库成功了，结果 C 系统写库失败了，咋整？你这数据
就不一致 了

如何保证消息可靠性 (高)

消息丢失的几种情况

发送时丢失

生产者发送消息到交换机的过程中丢失了 (消息确认 confirm
机制)

交换机分发消息到队列的过程中丢失了 (return机制)

MQ宕机

队列已经接收到了消息, 但未持久化, MQ宕机就会丢失消息
(消息持久化以及MQ集群, 保证高可用)

af://n28
af://n39

消费时丢失

消费者拿到消息后未消费消息就丢失了 (消费者手动ACK)

confirm机制, 发送者确认

消息成功投递到交换机，返回ack

消息未投递到交换机，返回nack

在生产者那里设置开启confirm模 式之后，你每次写的消息都会分
配一个唯一的 id，然后如果写入了 RabbitMQ 中，RabbitMQ 会给
你回传一个ack消息，告诉你说这个消息 ok 了。如果 RabbitMQ 没
能处理这个消息，会回调你一个 nack接口，告诉你这个消息接收失
败，你可以重试。

return, 发送者回执

消息投递到交换机了，但是没有路由到队列。返回ACK,及路由失
败原因。

消息成功从交换机路由到队列, 则不返回任何东西.

项目中配置ConfirmCallback和ReturnCallback. ConfirmCallback
就是设置消息未成功投递到交换机, 要做什么, 比如记录日志之类的.
ReturnCallback消息没有从交换机路由到队列时触发的回调, 可以记
录一下日志.

消息持久化: 开启 RabbitMQ 的持久化，就是消息写入之后会持久
化到磁盘，哪怕是 RabbitMQ 自己挂了，恢复之后会自动读取之前
存储的数据，一般数据不会丢.

消费者ACK: 消费者确认机制，即：消费者处理消息后可以向MQ发
送ack回执，MQ收到ack回执后才会删除该消息。

死信队列? 如何导致死信 (中)

死信，顾名思义就是无法被消费的消息. 当一个队列中的消息满足下
列情况之一时，可以成为死信（dead letter):

消息被拒绝消费

消息TTL到期，超时无人消费

要投递的队列消息堆积满了，最早的消息可能成为死信

如果该队列配置了dead-letter-exchange属性，指定了一个交换
机，那么队列中的死信就会投递到这个交换机中, 而这个交换机称为
死信交换机（Dead Letter Exchange,简称DLX)。

死信队列是队列将死信(无法被消费的消息放到死信交换机中)

死信队列可以像republish一样作为消息消费失败的兜底方案

在死信队列里面可以对我们的异常消息进行MySQL/Redis持
久化，然后人工处理等操作

另一方面可以处理消息超时无人消费以及队列满了的问题.

延时队列 (中)

延迟队列指的是消息发送后到mq不会立即被消费，mq会存储对应
的延迟消息，而是等待特定时间后，消费者才能拿到这个消息进行
消费

比如订单的超时取消, 订单信息被放到mq中, 30分钟未支付订单就取
消. 如果使用延时队列, 那监听mq的消费者从mq中直接拿到的就是
30分钟未支付订单的信息, 然后直接取消订单. 避免轮询数据库查找
超时订单.

主流mq都支持延时队列, 如RocketMQ、RabbitMQ、Pulsar、
Kafka，都支持定时/延时消息

af://n77
af://n97

rabbitMQ的延时队列, 需要通过插件或者TTL机制模拟才能实现.

RabbitMQ使用TTL机制模拟延时队列 (中)

TTL就是消息的存活时间。RabbitMQ可以分别队列设置消息存活时
间.

在创建队列A的时候可以设置队列中消息的存活时间TTL，当生产
者发送消息进入到队列A并且在存活时间内没有消费者消费，则
此消息就会从当前队列被移除

当TTL结束之后，我们可以指定将当前队列A的消息转存到的队
列B

那么消费者监听队列B, 从队列B中得到的消息就是延迟消息了.

消息的幂等性 (高)

网络不好的时候, A向队列发送一条消息, 消息发送成功, 队列将消息
给B服务, 但是由于网络原因A服务一直未收到ack, 此时A服务重发了
消息, 队列又将消息给B服务, 此时就出现了消息重复消费.

或者说MQ向B服务发送了消息, 凡是网络原因, B服务没有能向MQ发
送ack, 所以队列将消息重复发送了一遍, 产生了重复消费.

消息重复消费是无法避免的, 所以要做消息的幂等. 幂等性的处理方
式如下:

af://n103
af://n114

唯一约束

如果从MQ拿到数据是要存到数据库，那么可以根据数据创建
唯一约束

同样的数据从MQ发送过来之后，当插入数据库的时候，会报
违反唯一约束，不会插入成功的。

或者可以先查一次，是否在数据库中已经保存了，如果能查
到，那就直接丢弃就好了(在高并发的情况下，有数据库写入
的瓶颈)

消息唯一id

让生产者发送消息时，每条消息加一个全局的唯一id

然后消费时，将该id保存到redis里面

下次再消费时先去redis里面查一下有么有，没有再消费

消息积压如何处理 (中)

当生产者发送消息的速度超过了消费者处理消息的速度, 或者如果消
费者因为某些原因持续阻塞，就会导致队列中的消息堆积，直到队
列存储消息达到上限。最早接收到的消息，可能就会成为死信，会
被丢弃，这就是消息堆积问题

解决消息堆积

增加更多消费者，提高消费速度

提高单个消息者的处理能力, 在消费者内开启线程池加快消息处
理速度

缺点: 消息太多就会开启太多新线程, cpu压力大

如果是bug导致几百万消息持续积压几小时。有如何处理呢？

af://n139

1. 先修复consumer消费者的bug，以确保其恢复消费速度，然后
将现有consumer都停掉

2. 新建一个topic, partition是原来的10倍，临时建立好原先10倍的
queue数量

3. 然后写一个临时的分发数据的consumer程序，这个程序部署上
去消费积压的数据，消费之后不做耗时的处理，直接均匀轮询写
入临时建立好的10倍数量的queue

4. 接着临时征用10倍的机器来部署consumer,每一批consumer消
费一个临时queue的数据

5. 这种做法相当于是临时将queue资源和consumer资源扩大10
倍，以正常的10倍速度来消费数据

6. 等快速消费完积压数据之后，得恢复原先部署的架构，重新用原
先的consumer机器来消费消息

消息的顺序性 (中)

(该方案适合rabbitmq, rocketmq和kafka有所不同)

为什么要保证顺序

消息队列中的若干消息如果是对同一个数据进⾏操作，这些操作
具有前后的关系，必须要按 前后的顺序执行，否则就会造成数据
异常。

举例:

业务要对某个数据依次做 插入->更新->删除操作，这个顺序必须
是这样

如果在消费过程中，消息的顺序变成了 删除->插入->更新，那么
原本应该被删除的数据，就没有被删除，造成数据的不⼀致问题

出现顺序错乱的场景

af://n166

⼀个queue => 多个consumer去消费

consumer从MQ里面读取数据是有序的， 但是每个consumer
的执⾏时间是不固定的，⽆法保证先读到消息的 consumer⼀定
先完成操作

这样就会出现消息并没有按照顺序执行，造成数据顺序错误

保证消息的顺序消费

拆分多个queue，每个queue⼀个consumer

会使队列变多, 造成吞吐量下降

这种可以在消费者内部采用多线程的方式去消费

不同的消息中间件对消息顺序性的支持和实现方式有所不同，一些
消息中间件如 Kafka、RocketMQ 在设计上就对消息顺序性有较好
的支持

Kafka：通过分区和有序消费保证分区内消息顺序性，只要生产
者将相关消息发送到同一个分区，消费者按顺序从该分区拉取消
息，就能保证消息顺序。

RocketMQ：支持顺序消息，通过将消息发送到特定的队列，并
确保消费者按照顺序从队列中获取消息来保证顺序性

	MQ
	MQ有什么作用/为什么使用MQ (高)
	MQ优缺点 (高)
	如何保证消息可靠性 (高)
	死信队列? 如何导致死信 (中)
	延时队列 (中)
	RabbitMQ使用TTL机制模拟延时队列 (中)
	消息的幂等性 (高)
	消息积压如何处理 (中)
	消息的顺序性 (中)

